
Reproducible Research Recipes 

Collaborative Idea team members 

Jennifer Molloy, Robert Haines, Adam McMaster, Fabian Renn, Robin Wilson 

Hackday pitch leader 

Robin Wilson 

Context 

Tool to support computational research across all domains 

Problem 

"One small change in your input data, one giant screw-up in your PhD viva" 

As scientists we often run into problems when we have multiple data sources, each of which 
undergoes multiple processing steps before final output such as plots, tables or even entire 
theses are produced. Small changes in input files or code can lead to large changes in these 
final outputs, but it is often difficult to spot this. 
Putting your code together into a reproducible pipeline can solve this - particularly when 
dependency management is included which ensures that the right processes are re-run when 
bits of code or data change. 
There are methods to solve this problem (such as make), but these generally come with a 
significant learning curve, and creating these sort of pipelines is very difficult - particularly 
for inexperienced users. 

Solution 

A simple graphical tool to sketch out dependencies between different tasks and then produce 
an executable pipeline. For example, this could be a GUI tool which allows users to drag and 
drop individual tasks and data into a pipeline, connect them to show the dependencies and 
then produces something like a Makefile which can then be run easily. The tool could also 
support generic rules to, for example, run a certain command to convert all .dat files to .png 
files by plotting them in R. 

We realise there are pipeline tools currently available, but they're often very complex and 
become a programming environment of their own. With this tool we want to produce a really 
simple 'lightweight' interface for co-ordinating the tools you already use, rather than adding 
something else to learn! 
A quick investigation shows that a tool like this does not currently exist. 

 

 

 



Diagrams 

 

 

Extensible Github views 

 
Collaborative Idea team members 
Jens Nielsen, Michael O'Hagan, Jane Charsleworth, Dominic Orchard, Ross Mounce 

Hackday pitch leader 
Jens Nielsen 

Context 
Github is great for sharing code and data. A further useful feature is the ability to view files 
in the browser and compare versions (“diffs”). Visualisations are extremely useful for 
communicating data. 

Problem 
The supported file formats for Github ‘views’ is limited to a small number of (arbitrary) 
formats, including text files, images, CSV, GeoJSON, STL. It would be even better if 
researchers could render, and compare versions, for other common scientific formats within 
Github repositories, for example: 

https://github.com/blog/817-behold-image-view-modes


• phylogenetic trees (e.g. nexus/newick and see separate illustration) 
• Matplotlib 
• gnuplot 
• protein structures (e.g. PDB files) 
• NMR spectra (e.g. raw FID files) 

But none of these are supported. 

Solution 
We propose extending github with a system for extensible user-defined ‘views’. This will 
allow scientists to develop views for their projects that can be shared within the community. 
Since the Github.com website is itself not open-source, the development process will need to 
first start on the ‘Gitlab’ clone (providing a roadmap for adoption into Github.com). The 
extension will need to take a raw file (of some format) as input, and produce HTML 
(+CSS/Javascript) as output (ideally without any system calls, for security reasons). To 
address safety concerns we would suggest using Github’s current limitations regarding e.g. 
file sizes as a starting point 
Diagrams 

 

  

https://help.github.com/articles/what-are-the-limits-for-viewing-content-and-diffs-in-my-repository


Phylogeny of Scientific Codes 

 
Collaborative Idea team members 
Devasena Inupakutika, Laurent Gatto, Philip Fowler, Katalin Phimister, Daniele Tartarini 

Hackday pitch leader 
Laurent Gatto 

Context 
Scientific codes vary tremendously, even within a discipline. For example there are varying 
degrees of documentation and utility of error messages. In extreme cases some codes 
resemble black boxes. 

Problem 

It is very hard to know which codes are "better" (or in a related way, which codes are more 
similar). Mind you, this isn't intended *entirely* seriously - but it would be fun to see if we 
could come up with a phylogenetic tree of the scientific codes from a particular scientific 
discipline, such as quantum chemistry or classical molecular dynamics or R packages. 
Having said that, we hope that the results would spur developers to improve their code, by 
e.g. providing comments for each method in a class etc. 

Solution 

• retrieve a set of scientific codes to study 
• design and implement an algorithm to classify and compare the source code in 

plaintext. This might look at the amount of documentation included with the package, 
the proportion of the code that is documented, the number of variables that match 
dictionary entries, a distribution of words in the code ("for", "if" etc) and symbols 
("{}, ";" etc). 

• use to compare different packages in an, hopefully, automated way 
• draw a phylogenetic tree and see what we can learn! (Hopefully we could infer which 

codes are of higher quality). 
• publish it somewhere (like PNAS) 

 
 

  



Diagrams 

 

Crowd-sourced image annotation web site 

Collaborative Idea team members 
Jan Kim, Mike Jackson, Graham Etherington, Michael Fischer, Robyn Grant 

Context 
Any with image processing e.g. bioinformatics, medical etc, in which images require manual 
intervention. 

Problem 
Images require hand annotating via point-and-click using the mouse e.g. to mark up whiskers 
on rats, or tweak marked areas on the brain. 
The number of images available (100s-1000s) means this is time-consuming and tedious. 

Solution 
Crowd-source - have volunteers do the annotation! 
Support competitive motivators e.g.: 

• Badging for numbers of images done. 
• League tables of numbers done. 

Promote collaborative motivators e.g.: Helping science. 
Support manual review by the image set owner to assess the quality of the annotations. 
Future: Evaluate multiple attempts on same images for goodness-of-fit to help devise more 



intelligent automated methods in future. 
  

Readmycode: Code review buddy finder 

Collaborative Idea team members 
James Hetherington, Leanne Wake, Nicolas Gruel, Jonathan Cooper, Sweitze Roffel 

Hackday pitch leader 
James Hetherington 

Context 
A: I'm a researcher who programs. I know my code could be better, but I don't know how to 
start finding out what I could improve and how. I want to find people to show my code to. 
B: I run a code journal. I want to find programming researchers who are qualified to review 
submissions. 

Problem 
Given: 

• A link to my code 
• A description of me as a researcher 

Find: 
Other researchers who work 

•    in similar fields 
•    OR with similar techniques 
•    AND in the same programming language 

Solution 
From: 
A git/hg repo or github URL 
An ORCID or userid on academia.edu or Web of Science or similar 
Use existing online searches and data to match and search. 
 



Diagrams 

 

Digitalisation of hand-drawn chemical structures 

Collaborative Idea team members 
Paul Barrett, Derek Groen, Andreas Heger, Rob Davey 

Hackday pitch leader 
Derek Groen 

Context 
Much chemical data is represented as structure diagrams. Many of these are hand-drawn 
figures in paper lab notebooks. We envisage moving legacy chemistry lab notebooks to a new 
digital system would benefit from automated scanning, recognition and digitalisation of these 
structure doodles. 



Problem 
Scientists of different disciplines have a need for image scanning and recognition for a 
variety of purposes. One such example is legacy hand-drawn chemical structures in paper lab 
notebooks that hinder reproducibility and understanding of the research. 

Solution 
Taking an automated "Where's Wally" solution code as an example and abstract it out to 
recognise chemical structure drawings in scanned pages and produce digital versions, i.e. 
SMILES string, and potentially PDB format files and 3D representations. 
 

  

http://stackoverflow.com/questions/8479058/how-do-i-find-waldo-with-mathematica


Diagrams 

 

  

 



Open Source Health Check 

 
Collaborative Idea team members 
Arfon Smith, Kywei Duan, James Spencer, Mark Basham 

Context 
Open source software? 

Problem 
What steps do I need to take to make my open source project more shareable? 
For example: Is there a licence? Is there a README? Is there service running automated 
tests? Are community contributions ever accepted? 

Solution 
We propose creating a website (or automated tool) that looks at an open source project and 
checks for key files/signatures such as a licence.txt, README.md, .travis.yml file that 
denote repository health. 
If these files are missing then the Open Source Health Check Bot (OSHCB) opens a pull 
request on GitHub suggesting modifications necessary to improve the 'health' of the 
repository. 
A possible extension to this is a simple tool that makes an assessment of a code repository 
that helps researchers with the question 'is my code good enough to share'. It always says 
YES. 
 
Diagrams 

 



 

Peer review of software reproducibility 

Collaborative Idea team members 
Stephen Eglen, Jure Triglav, Neil Chue Hong, Grigori Fursin, Graham Klyne 

Hackday pitch leader 
Jure Triglav 

Context 
Published results based on software that others cannot successfully install and run cannot 
really be considered to be reproducible.  But, full peer review of software is unrealistic to 
achieve, so are looking for an accessible proxy for this. 

Problem 
How to get a software description (e.g. a README?) that is good enough for someone else 
to install and reproduce the claimed results with given input. 
Requirements: 

• mechanisms to get to the right reviewers; 
• testing process: needs to be constrained? 
• a way to report back - feedback into product instructions (pull request?); 
• mechanisms to credit reviewers (author credit on paper). 

Solution 
Potential solution: 

• adjunct(s) to GitHub infrastructure? 



• reporting though issues and pull requests 
• ideally, feedback crystallised in automatic/executable configuration files 

Matlab Toolbox Metadata 

Collaborative Idea team members 
Tim Parkinson, Liberty Foreman, Michael Fischer, Bruno Vieira, Marta Ribeiro 
Context 
Many users in a lab use Matlab scripts to analyse data but they may all use different versions 
of toolboxes from a range of commercial and in-house developers. 
Problem 
The different versions of the toolboxes may have different parameters or else make different 
assumptions as to default values and therefore may produce different results on different 
machines (even if those machines are identical hardware and OS). 
(Same problem for Ruby and Ruby Gems). 
Solution 
a) find a way to make a Matlab script dump any version info for the toolboxes it is using. 
b) set up some sort of register (website) for the toolboxes in use that describe the differentces 
between the toolboxes and between versions of each toolbox. 

Diagrams 

 

  



New recomputation.org experiment 

Collaborative Idea team members 
Ling Ge, Karen Porter, Filippo Mortari, Olexandr Konovalov, Ahmad Alam 
Hackday pitch leader 
Olexandr Konovalov 
Context 
Recomputable scientific experiments. 
Problem 
We suggest to pick up a computational experiment and make it reproducible. That could be 
an experiment from the area of expertise of team member(s), either from their own 
experience or from some (recent or classical) computational results in their field. For 
example, one could find a paper in which an experiment and software/data are described and 
start from that. 
Solution 
Make a virtual machine either in VirtualBox to run locally or (preferably) in Azure cloud. 
Configure it to run the experiment automatically after booting up. Try to address the issues of 
user friendliness and discovery. 

Diagrams 

 

 

 



Dynamic figures to follow-up findings instantly 

Collaborative Idea team members 
Matthew Brack, Martin Hammitzsch, Manuel Corpas, Niall Beard 
Hackday pitch leader 
Niall Beard 
Context 
Make software creating figures available as service persistently. 
Problem 
Reproduce and replicate a figure from a paper with data used in the paper and 'my data' to 
follow-up findings presented in the paper. 
Solution 

• Build the figure on a website with open libraries and APIs, e.g. using Google chart 
API 

• Preconfigure the dynamic figure using the paper data 
• Mint a DOI to the website to enable the 'social process' / commitment behind the DOI 

universe 
• Put link/DOI to website beneath figure in paper 
• Link/DOI directs to website, preconfigured with data and display type and displays 

figure form paper 
• Use button to change the data for same figure displaying other data 

Diagram 

 



Reproduciliteracy: Reculturing Research 

Collaborative Idea team members 
Alexandra Simperler, Ian Gent, Kenji Takeda, Sebastian Gibb, Tom Crick, Stephen Crouch 
Hackday pitch leader 
Ian Gent 
Context 
This is a problem that transcends education and research, from undergrads to postgraduate; 
people who aren't at the CW14 need to be convinced to spend time and money to learn about 
the importance, skills and tools associated with reproducibility in research. 
Problem 
As Carole Goble mentioned in her talk at the CW14, there is a multitude of manifestos and 
pledges, declarations for research software around recomputation, reproducibility, 
repeatability. It's easy to sign a manifesto or pledge, but how can we provide a cohesive, 
over-arching support that effects culture change. The other issue is that many scientists aren't 
good at selling ideas - how can we help them to sell reproducibility? How can this be sold to 
researchers as a good idea that will benefit them? 
A lot of materials on these topics already exist (e.g. in Software Carpentry, others), but 
bringing them together in a meaningful way could make this easier for others to understand. 
Solution 
We can provide people with materials (slides, guides, documents) to help them understand 
and sell reproducibility to others within their own contact networks. We could use the 
hackday time to collate/develop such materials. 
As a starting point, we could create a small set of support materials for SSI Fellows. This 
could include a slide for talks, a behavioural case study which illustrates the point and 
benefits of it. 

Diagram 

 



  

 


