
Checklist for a Software Management Plan v0.1

Please cite as: The Software Sustainability Institute. (2016). Checklist for a Software Management

Plan. v0.1. Available online: http://www.software.ac.uk/software-management-plans.

Use of this checklist

Advice and guidance provided on writing Software Management Plans, particularly that relating to

intellectual property, copyright, licensing and patents, is for informational purposes only. It is not,

and nor is it intended to be, legal advice. You should not act in any way on the basis of the

information without seeking, where necessary, appropriate professional advice concerning your own

individual circumstances.

You are solely responsible for determining the appropriateness of any advice and guidance provided,

and assume any risks associated with your use of this advice and guidance.

Improving our advice and guidance

At present, our advice and guidance is a draft as we are now rolling it out for use and evaluation by

researchers. We encourage researchers, funders and other stakeholders to contact us

(http://www.software.ac.uk/about/contact) with feedback on our software management plan

templates, advice and guidance; suggestions to what software management plans should include;

how they overlap with data management plans; and, how to promote their uptake.

Acknowledgements

Our advice and guidance has its origins in an original guide on Writing and using a software

management plan (http://www.software.ac.uk/resources/guides/software-management-plans)

written by the Neil Chue Hong of The Software Sustainability Institute, with input from Institute staff

Rob Baxter, Steve Crouch, Mike Jackson, and Tim Parkinson, and acknowledgement to Kevin Ashley

and the Digital Curation Centre for their work on Data Management Plans.

The advice and guidance have evolved in response to feedback from: Mario Antonioletti, Neil Chue

Hong, Steve Crouch, Carole Goble, John Robinson, The Software Sustainability Institute; Peter Cock,

The James Hutton Institute; Robert Davey, The Genome Analysis Centre; Mark Plumbley, Centre for

Vision, Speech and signal Processing, University of Surrey; Chris Rawlings, Rothamsted Research.

We also acknowledge the valuable assistance and generosity of the Digital Curation Centre

(http://www.dcc.ac.uk), particularly Sarah Jones and Marta Ribeiro, in extending DMPonline to

support Software Management Plans.

SSI Checklist SSI Guidance and questions to consider

About your software – a minimal Software Management Plan

When developing research software, you need to know what you are going to write, who is it for (even if this is

just you), how will you get it to them, how will it help them, and how you will assess whether it has helped

them or not. Together, this information forms the minimal, essential, content of a Software Management Plan.

Research software can include both scripts and programs and can be written in languages as diverse as bash

shell, R, MATLAB, Python, Java, C, C++, or Fortran; and vary in scale from 100 lines to 10,000 lines of code.

What software

will you write?

Questions to consider:

• What will your software do?

• Will your software have a name? Do you have one in mind? Is this name unique

and meaningful and not in violation of any existing trademarks?

Guidance:

When you come to choose a name for your software, see the Software Sustainability

Institute’s “Choosing project and product names”

(http://software.ac.uk/resources/guides/choosing-project-and-product-names).

Who are the

intended users

of your

software?

Questions to consider:

• Is there just one type of user or are there many?

• Is your software for those new to your research field, for experts in your field, or

for both?

• What, if any, software installation and configuration skills, knowledge and

expertise will your users need? Will they need to be familiar with building and

installing software via the command-line?

• What software development skills, knowledge and expertise do your users need?

Will they need to develop their own code to be able to use your software?

Guidance:

Your intended users could include yourself, your research group, your department or

institution, your project, your research community, other research communities, or the

general public.

If your software is a framework that allows users to develop their own plug-ins, or is a

library that users can use within their own research software, your users will need some

experience of software development to get the most from your software.

How will you

make your

software

available to

your users?

Questions to consider:

• Will you release binaries, libraries or packages? How will users access

these?

• Will your software be accessed solely as an online service or via a web

portal?

• Will you release your source code? Do your funders, or other stakeholders,

require you to release your source code? How will users access your source

code?

• Will users have to register to access or use your software?

• Will you charge users a fee to access or use your software? What will the

revenue generated by these fees be used for?

Guidance:

There are many ways in which you can release your software. These include: a

binary executable that can be run directly; bundled in an installer program; an

archive (.zip or .tar.gz) of binary executables or libraries, or as Python or R

packages; an archive of source code; via a download link on a web site; via e-mail

from you; via access to a source code repository hosted at your institution or on a

third-party site such as GitHub (http://github.com), GitLab

(http://www.gitlab.com), BitBucket (http://bitbucket.org), LaunchPad

(https://launchpad.net) or Assembla (https://www.assembla.com).

Building or compiling software can be complicated and time-consuming. If you can,

provide your software in a form that can be deployed and used without requiring

your users to build it. This saves your users both time and effort, and can be

especially valuable if your users are not software developers.

Even if your funders or other stakeholders do not require you to release your

source code, give strong consideration to releasing it anyway. See OSS Watch’s

“Benefits of Open Source Code” (http://oss-

watch.ac.uk/resources/whoneedssource).

If you don’t need to monitor access to your software, or to restrict access to

authorised users only, consider allowing anonymous access to and use of your

software.

If you want, or need, users to pay a fee before users can access or use your

software, you need to tell some users why they need to pay this fee and what they

get in return. Your fee might be needed to help fund your time to develop your

software, to fund your time to provide support for your software, or to help pay for

any infrastructure or third-party dependencies you use.

Providing free and anonymous access to your software gives users immediate

access to it to “give it a go”. This can also help make your software more appealing

than competing software that has similar functionality, but which requires

registration or charges a fee for its use.

How will your

software

contribute to

research?

Questions to consider:

• Will it help to produce results more rapidly?

• Will it help to produce results to a higher degree of accuracy or a finer level

of detail?

• Will it help to conduct analyses cannot be conducted at present?

• Will it help users to exploit the power of modern super-computers?

• Will it, in some form, implement a novel solution to a research problem?

• What are the limitations of similar research software that already exists?

How will your software be better?

• What are the benefits for each type of user?

Guidance:

When developing research software, it is good to have some idea as to how it will

contribute to research, whether this is research done by you or by others.

How will you

measure its

contribution to

research?

Questions to consider:

• What evidence do your funders, or other stakeholders, expect you to

present to show that your software has contributed to research?

• Will you measure who has downloaded your software?

• Will you measure who has used your software?

• Will you gather information on publications that describe research which

your software has helped to enable?

• Will you have a recommended reference or citation for your software, or a

related paper?

• Will you contact users via e-mail or questionnaires, or at conferences or

workshops, to ask them how they used, and benefited from, your

software?

• Will you encourage users to write blog posts on how they have used your

software and how it helped them?

Guidance:

There are many ways to quantify interest in your software, including how many

people have shown interest in your software, how many have used your software,

and what they have used it for. These include: number of downloads; number of

forks, if hosted on GitHub or BitBucket; number of pull requests or code

contributions such as bug fixes, enhancements or extensions; number of e-mail list

or forum members; number of support requests such as e-mails, bug reports,

feature requests or open issues; papers you, and/or your users, have published to

which the use of your software contributed; citations of these papers; blog posts

by others about how they used your software; number of attendees at conference

or workshop talks, demonstrations, poster sessions or tutorials.

Asking users to cite your software, directly or via a related paper, and providing a

recommended citation, means you can search for these citations. Consider adding

a citation requirement to your software’s licence, so it becomes a condition of its

use. See the Software Sustainability Institute’s “How to cite and describe software”

(http://software.ac.uk/so-exactly-what-software-did-you-use) and “Oh research

software, how shalt I cite thee?” (http://www.software.ac.uk/blog/2014-07-30-oh-

research-software-how-shalt-i-cite-thee), which has examples of recommended

citations for various software packages.

Your software development infrastructure

What

infrastructure

will you need?

Questions to consider:

• What infrastructure will you need, now and in the future?

• Who needs access to this infrastructure, and for what?

• Does it provide the features you need now?

• Does it provide the features you will need in the future?

• What infrastructure needs to be kept private, and what can be publicly

visible?

Guidance:

Source code should be held under revision control (version control). With revision

control you can retrieve any version of your software, or any file within those

versions, from any point in time. Revision control allows multiple developers to

work on the same software, at the same time, sharing their changes without the

risk of a file being overwritten and its previous contents being lost forever. Revision

control automatically records who changed what, and when, and allows you to

record why the changes were made. It provides a complete audit trail of the

evolution of your software for you and, in an open source world, for your users and

developers. See “Make Incremental Changes” in “Best Practices for Scientific

Computing”

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745)

and the Software Sustainability Institute’s “Top tips on version control”

(http://www.software.ac.uk/blog/2013-09-30-top-tips-version-control). Popular

revision control tools include Git, Mercurial, and Subversion.

Other infrastructure you might need can include: a web site, a wiki, a ticketing

system (for managing queries, bug reports, feature requests and any other task

that needs done), mailing lists or forums with publicly searchable archives, chat

rooms, blogs, test servers, continuous integration servers (for automatically run

tests whenever changes are committed to a source code repository), collaborative

document editing tools, and project management tools.

See the Software Sustainability Institute’s “Infrastructure for unselfish software

development” (http://www.software.ac.uk/blog/2012-07-17-infrastructure-

unselfish-software-development-collection-top-tips), which suggests infrastructure

to start developing research software, infrastructure for closer collaboration, and

infrastructure to strengthen community engagement and deliver reliable software.

Where will your

infrastructure

be hosted?

Questions to consider:

• Will you host the infrastructure yourself?

• Is there departmental or institutional infrastructure you can use?

• Does your funder recommend infrastructure that you can use?

• Will everyone who needs to access the infrastructure be able to access it?

• Is the host’s quality of service for the infrastructure acceptable for your

needs?

• Is the infrastructure free or do you have to pay a fee to the host? If you

have to pay a fee, can you afford the payments for the lifetime of your

project?

• Does the infrastructure, and host, look like they will be around for as long

as you need them?

• Is it easy to back up, or export, all your content?

• Are there any alternatives that are also suitable, should you need to

migrate in future?

Guidance:

Ask your IT support staff if there is departmental or institutional infrastructure you

can use. Likewise, ask your funders if they recommend, or require, a specific host

to use.

Popular third-party hosts for source code repositories include GitHub

(http://github.com), GitLab (http://www.gitlab.com), BitBucket

(http://bitbucket.org), LaunchPad (https://launchpad.net) and Assembla

(https://www.assembla.com). These hosts also provide other project infrastructure

including web sites, ticketing systems, wikis and notifications. Third-party hosts can

differ in their pricing and levels of service. Some charge for private repositories.

Some offer discounts or free hosting for academics.

Ticketing systems that can be deployed locally include JIRA

(https://www.atlassian.com/software/jira), Bugzilla (https://www.bugzilla.org/)

and Trac (http://trac.edgewall.org/). Trac also provides a wiki. JIRA and Trac can

also be used for project management. A third-party project management tool is

Trello (https://trello.com/).

Continuous integration servers include Jenkins (http://jenkins-ci.org), which can be

deployed locally, and Travis CI (http://travis-ci.org), a hosted continuous

integration service that automatically runs tests whenever changes are committed

to a source code repository on GitHub (http://github.com).

Third-party mailing lists include Google Groups

(https://groups.google.com/forum/#!overview) and MailChimp

(http://mailchimp.com/).

Collaborative document editing tools include EtherPad (http://etherpad.org/), an

open source, collaborative document editing service that can be deployed locally,

or used via a public instance (https://github.com/ether/etherpad-lite/wiki/Sites-

that-run-Etherpad-Lite), or third-party tools such as GoogleDocs

(https://www.google.co.uk/docs/about/), and HackPad (https://hackpad.com/).

See the Software Sustainability Institute’s “Choosing a repository for your software

project” (http://software.ac.uk/resources/guides/choosing-repository-your-

software-project) and “Top tips for choosing a computing infrastructure”

(http://www.software.ac.uk/blog/2013-05-16-top-tips-choosing-computing-

infrastructure).

Developing good software

Developing software that can be understood by developers, is tested and is tested well, is

documented for both users and developers, and is usable within across environments by a wide

range of users.

How you will

deliver code

that can be

understood?

Questions to consider:

• Do your implementation languages have coding standards?

• Will you define a coding standard to which your code will be expected to

conform?

• Will you use structured comments from which documentation can be

automatically generated?

Guidance:

Readable code is useful not only for the developer who writes the code but also for

other developers who may need to modify or extend the code. This can include

new researchers within your department or project, your collaborators, or, for

open source software, your users. It can even include you, six months or a year

from now, trying to understand what you wrote and why you wrote it that way.

A coding standard is a specification of how your code should look, including

naming, formatting and use of whitespace. Many projects and organisations have

coding standards including Google’s “Java style”

(https://google.github.io/styleguide/javaguide.html), GNU’s “Coding standards”

(http://www.gnu.org/prep/standards/), and the UK Met Office’s “Fortran 90

Standards”

(http://research.metoffice.gov.uk/research/nwp/numerical/fortran90/f90_standar

ds.html). Some languages have generic coding standards including Java – Oracle’s

“Code Conventions for the Java Programming Language”

(http://www.oracle.com/technetwork/java/codeconvtoc-136057.html) – and the

Python community’s “PEP 0008 – Style Guide for Python Code”

(https://www.python.org/dev/peps/pep-0008/).

Many languages support structured comments including JavaDoc

(http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-

135444.html) for Java, Doxygen (http://www.stack.nl/~dimitri/doxygen/) for C,

C++, Fortran or Python, and Docstrings (https://www.python.org/dev/peps/pep-

0257/) or Sphinx (http://sphinx-doc.org/) for Python. From these comments,

documentation can be automatically generated in HTML, LaTeX or other formats.

This documentation can help developers to understand your code without having

to look at your source code.

See “Write Programs for People, Not Computers” in “Best Practices for Scientific

Computing”

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745)

and the Software Sustainability Institute’s “Writing readable source code”

(http://software.ac.uk/resources/guides/writing-readable-source-code).

How you will

deliver good

quality code?

Questions to consider:

• Will you organise regular code reviews?

• Will you encourage pair programming?

Guidance:

Code reviews, where one developer reviews another's code, provide an

assessment of the quality of code, including: how understandable the code is, and

how this can be improved; possible bugs; and, suggestions as to how the code can

be made more robust, extensible, or efficient. Code reviews also provide a means

by which knowledge of the code can be transferred between developers, thereby

increasing the software’s “bus factor” (http://en.wikipedia.org/wiki/Bus_factor).

Pair programming, where two developers write code using one keyboard, can

serve as a form of continuous code review and knowledge transfer.

See “Collaborate” in “Best Practices for Scientific Computing”

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745).

How will you

choose your

test cases?

Questions to consider:

• How will you assess whether your software is behaving as intended, that is,

producing scientifically valid results?

• How will you assess whether your software is not behaving as intended?

• Will your intended users help you choose your test cases?

Guidance:

You need some way of deciding whether your software is working correctly,

producing results that are scientifically valid as determined by you or the

researchers who will use your software. It is also useful to have some way of

determining if your software is not working correctly. You don’t want your

software to output valid data when given nonsensical input data, but to exit with

some suitable error message, so you want to test that it does exit in such cases.

Test cases allow you to check that your software behaves as expected, when given

both valid and invalid inputs, and continues to do so as it is extended, refactored,

fixed, optimised or parallelised.

See the Software Sustainability Institute’s “Testing your software”

(http://software.ac.uk/resources/guides/testing-your-software).

How will you

make it easy

to write and

run tests?

Questions to consider:

• Will you use automated tests?

• Will you use a unit test framework?

• Will you use test coverage tools?

Guidance:

After modifying your software, you and your developers will want to check that

your changes have not broken anything. Automated tests, code that tests code,

can be written once and then run many times, for example every day, or, even,

every time you change your software. What is a repetitive manual process

becomes an automated process, which makes it easier for you and your developers

to run the tests. See the Software Sustainability Institute’s “Testing your software”

(http://software.ac.uk/resources/guides/testing-your-software).

Unit test frameworks are available in many languages to help you write, discover

and run tests, and report test results. See “Plan for Mistakes” in “Best Practices for

Scientific Computing”

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745)

and Wikipedia’s “List of unit testing frameworks”

(https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks).

Code coverage tools are a useful complement to automated tests. They analyse

your code as your tests are run and report on what parts of your code are, or are

not, executed. They can help you to identify whether your tests are causing the

critical parts of your software to be executed. See Cunningham and Cunningham’s

“Code Coverage Tools” (http://c2.com/cgi/wiki?CodeCoverageTools).

How will you

ensure that

your software

is tested

regularly?

Questions to consider:

• Will you set up an automated process to run your tests regularly?

• Will you use continuous integration?

• Will you use a hosted continuous integration service?

Guidance:

Automating the process of running tests allows you to run your tests on the most

recent version of your software at regular intervals. This means you, and others if

you publish the test results more widely, can quickly see the impact of changes you

make to your software. At its simplest, this can be done by deploying a server that

regularly executes a job to run your tests.

A more powerful solution is to use continuous integration, automatically running

tests whenever changes are committed to your source code repository. Hosted

continuous integration services can relieve you, and your organisation, of the cost

and effort of deploying and hosting a continuous integration server yourself.

See the Software Sustainability Institute’s “How continuous integration can help

you regularly test and release your software” (http://software.ac.uk/how-

continuous-integration-can-help-you-regularly-test-and-release-your-software)

and “Hosted continuous integration”

(http://www.software.ac.uk/resources/guides/hosted-continuous-integration).

How will you

let users know

about the

tests you do?

Questions to consider:

• Will you publish information on the platforms and environments your

software has been tested under?

• Will you publish your test cases?

• Will you publish your test results?

• Will you publish your test coverage results?

Guidance:

Publishing information on your test cases, tested platforms and environments and

test results can give your users confidence in the quality of your software. You can

automatically publish test results on a website or have test results mailed to a

mailing list. Continuous integration tools can also be configured to publish test

results.

How will you

help

developers to

understand,

modify,

extend and

test your

software?

Questions to consider:

• Will you document what developers need to know before they can start

developing your software?

• Will you document how to build and deploy your software?

• Will you document how to test your software? Will you document lists of

manual steps for test cases which cannot be run automatically but which

need to be tested?

• Will you document how to release your software?

• Will you document its design?

• Will you document its application programming interfaces?

• Will you document the data formats it uses for input and output?

• How often will you review your documentation to ensure it is up-to-date

and captures all the knowledge about how to develop your software?

• How will you ensure knowledge is captured and exchanged so that nothing

is lost when people leave?

Guidance:

Documenting everything about your software gets information out of the heads of

you and your developers and into a persistent, shared resource such as a collection

of documentation files in your source code repository, on a wiki, or within another

resource that can host documents. This helps to increase your software’s “bus

factor” (http://en.wikipedia.org/wiki/Bus_factor). This documentation is also

useful for other developers who wish to modify, extend, fix or test your code. This

can include new researchers within your department or project, your collaborators,

or, for open source software, your community.

See the Software Sustainability Institute’s

“Developing maintainable software”

(http://software.ac.uk/resources/guides/developing-maintainable-software).

Will your

software run

under multiple

environments?

Questions to consider:

• What are the popular operating systems, web browsers, compilers or

language versions used by your intended users?

• Would supporting additional operating system, web browsers, compilers or

language versions encourage new users to adopt your software?

Guidance:

If the environments popular with your intended users are not those you would

usually prefer, then target the environments of your users. Do not expect your

intended users to migrate to your preferred environment as this puts a barrier

between them and your software. For example, if Windows is the prevalent

operating system of your intended users then it is unreasonable to expect them to

migrate to Linux to use your software. As another example, if most of your

intended users use Python 2.7 then don’t use Python 3-only features in your code.

Code that compiles or runs under two or more of Windows, Unix/Linux and Mac OS

X will have a larger potential user community than code that is restricted to a

single operating system. Likewise, for web-based applications, those which can run

within two or more of Internet Explorer, Chrome, Firefox and Safari have a larger

potential community that those that restrict users to a single browser.

For C, C++ and Fortran code, it can be advantageous to support different compilers,

even for the same operating system. For example, if you want your code to run on

a Linux desktop and a super-computing service, you may want to consider

supporting the GNU, Intel and Cray compilers. Or, for example, for C++ you might

want to support compilation using the GNU C++ compiler on Linux and Visual C++

Express on Windows. Tools such as Automake

(https://www.gnu.org/software/automake) and CMake (http://cmake.org) can

assist you in managing support for multiple compilers under different operating

systems.

Another option for supporting multiple operating systems is to consider some form

of virtualization. Both VMWare Workstation Player

(http://www.vmware.com/uk/products/player) and Oracle VirtualBox

(https://www.virtualbox.org/) allow you to create virtual machines

(https://en.wikipedia.org/wiki/Virtual_machine), in which one operating system

can run as a program under another operating system. So, for example, an Ubuntu

virtual machine can run within Windows.

Docker (https://www.docker.com/) provides a lighter-weight alternative to virtual

machines. Rather than bundling the entire operating system, a Docker container

bundles Linux-compliant software along with the environment it needs to build and

run, including files, libraries and system tools. These containers can be deployed

and run within a Linux operating system or, for Windows, within a VirtualBox Linux

virtual machine.

How will your

software and

documentatio

n adhere to

disability

Questions to consider:

• Will the same information be presented in multiple ways?

• Will keyboard-only navigation through GUIs and web interfaces be

supported?

accessibility

guidelines?

• Will users be able to customise the appearance of GUIs or web interfaces?

• Will text and images be re-sizable without loss of clarity?

• Will documentation be readable in black-and-white without loss of clarity?

Guidance:

Accessibility refers to the ease with which users, regardless of disabilities or

impairments, can use your software and documentation. For example, the

continuous integration service Travis CI (https://travis-ci.org/) renders test

successes with a green tick and failures with a red cross, which accommodates

colour blind users. Using HTML “ALT” tags when developing web portals so that

non-text content, such as images, have a textual alternative, allows these to be

detected, and spoken by a screen reader

(https://en.wikipedia.org/wiki/Screen_reader).

There are a number of guides and checklists for designing accessible software and

documentation. See, for example:

• MSDN’s guide on “Designing Accessible Applications”

(https://msdn.microsoft.com/en-us/library/aa291864).

• IBM’s “Software accessibility checklist” (http://www-

03.ibm.com/able/guidelines/software/accesssoftware.html).

• IBM’s “Web accessibility checklist” (http://www-

03.ibm.com/able/guidelines/web/accessweb.html).

• Jakob Nielsen’s “Accessible Design for Users With Disabilities”

(http://www.nngroup.com/articles/accessible-design-for-users-with-

disabilities/).

• IBM’s “Documentation accessibility checklist” (http://www-

03.ibm.com/able/guidelines/documentation/accessdoc.html).

• WebAIM (http://webaim.org/) resources for web accessibility.

Managing your dependencies

Managing the use of third-party software, models, tools, libraries, data formats, protocols,

interfaces, services, databases, and implicit dependencies such as operating systems, languages and

browsers.

What third-

party

software,

models, tools,

libraries and

services will

you use?

Questions to consider:

• What are they needed for?

• Are they open source or proprietary?

• Are they free or do you have to pay a fee for use? If you have to pay, can

you afford the payments for the lifetime of your project? Will your users

need to pay too? Will this be acceptable to them?

• Do their terms and conditions of use or licences put any obligations or

constraints on you, your software or your users?

• Can you redistribute them or do your users have to download them?

• Do they look like they will be around, and supported, for as long as you

need them?

• What would be the impact if any of them were to disappear or cease to be

supported? Are there any alternatives that are also suitable?

• How will you design your code to minimise the coupling to these

dependencies as far as possible?

Guidance:

Using open source software can give you confidence that if the original authors

disappear, or their project ends, or ceases to provide support, you at least have the

means to be able to access, fix, improve or extend your software yourself. It also

gives you the potential to make such changes when you need them, rather than

having to wait for someone to do it on your behalf. See the Software Sustainability

Institute’s “Choosing the right open source software for your project”

(http://www.software.ac.uk/choosing-right-open-source-software-your-project).

Much of its advice applies not just to choosing open source software, but any third-

party software.

A common obligation when using third-party software is that you acknowledge its

use, and, if including it in your software, that you document its inclusion and

provide its licence with your software. “License compatibility”

(http://en.wikipedia.org/wiki/License_compatibility) is “an issue that arises when

licenses applied to copyrighted works, particularly licenses of software packages,

can contain contradictory requirements, rendering it impossible to combine source

code or content from such works in order to create new ones.” See David

Wheeler’s “Free-Libre / Open Source Software (FLOSS) License” slide

(http://www.dwheeler.com/essays/floss-license-slide.html) which summarises

how popular open source licences can be combined, and GNU’s “Various Licenses

and Comments about Them” (http://www.gnu.org/licenses/license-list.html).

You may plan for your software to invoke online services for specific computation

or data manipulation functions. As users and developers of your software need to

know about, and have access to, these services, the use of your software becomes

dependent upon the availability of these services. You may want to consider

whether you could embed the service’s functionality within your software, if the

code implementing the service is open source, or implement the functionality

yourself.

See the Software Sustainability Institute’s “Defending your code against

dependency problems” (http://software.ac.uk/resources/guides/defending-your-

code-against-dependency-problems).

What third-

party data sets

and online

databases will

you use?

Questions to consider:

• What are they needed for?

• Are they open or proprietary?

• Are they free or do you have to pay a fee for use? If you have to pay, can

you afford the payments for the lifetime of your project? Will your users

need to pay too? Will this be acceptable to them?

• Do their terms and conditions of use or licences put any obligations or

constraints on you, your software or your users?

• Can you redistribute them or do your users have to access or download

them?

• Do they look like they will be around, and supported, for as long as you

need them?

• What would be the impact if any of them were to disappear or cease to be

supported? Are there any alternatives that are also suitable?

• How will you design your code to minimise the coupling to these

dependencies as far as possible?

• Do you have a data management plan?

Guidance:

A common obligation when using third-party data is that you acknowledge its use

or provide a citation.

See the Software Sustainability Institute’s “Defending your code against

dependency problems” (http://software.ac.uk/resources/guides/defending-your-

code-against-dependency-problems).

A Data Management Plan can help you plan for the effective management of data

you will use, to enable you to get the most out of your research. See the Digital

Curation Centre’s “How to Develop a Data Management and Sharing Plan”

(http://www.dcc.ac.uk/resources/how-guides/develop-data-plan).

What

communicatio

ns protocols

and data

formats will

you use?

Questions to consider:

• Which communications protocols and data formats are commonly used

within your domain?

• What are they needed for?

• Are they open or proprietary?

• Are they free or do you have to pay a fee for use? If you have to pay, can

you afford the payments for the lifetime of your project? Will your users

need to pay too? Will this be acceptable to them?

• Do their terms and conditions of use or licences put any obligations or

constraints on you, your software or your users?

• Are they mature, ratified standards?

• Are there any alternatives that are also suitable?

• How will you design your code to minimise the coupling to these

dependencies as far as possible?

Guidance:

Try to use any communications protocols and data formats that are commonly

used within your domain. This can help to ensure interoperability with other

software within your domain.

Open communications protocols are those whose specifications have been

published and can be used and implemented by anyone. These include both

generic protocols (e.g. application layer protocols such as REST, SOAP, HTTP, XMPP,

SMTP and SSH, or lower transport level protocols such as TCP, or UDP). Similarly,

open data formats are those whose specifications have been published and can be

used and implemented by anyone. These include both generic data formats (e.g.

GIF, SVG for images, HTML and XML for documents, tar and zip for archives, CSV,

JSON, or NetCDF for data) and domain specific ones. See, for example, Wikipedia’s

list of “open formats” (https://en.wikipedia.org/wiki/Open_format).

Software that can communicate using an open communications protocol can be

used with any software that uses this protocol. Likewise, if data can be imported

and exported in an open format, then it can be used with any software that uses

this format. Software that supports open communications protocols and data

formats does not lock users into that software, because users can use, or develop,

alternative software, if necessary. This can make it easier for users of other

software may switch to your software, if your software is more innovative,

efficient, robust, scalable or functional than that of your competitors'.

Try and adopt open protocols, interfaces and data formats that are mature, ratified

standards, if possible. Standards can go through many iterations, because they

evolve as ideas are proposed and debated and the scope, remit and intent of the

standards are agreed. If a standard changes, then any software that uses the

standard needs to be changed to keep up to date. Most of the big changes occur

early in the lifetime of a standard. Mature and ratified standards are less likely to

change significantly or frequently, which reduces the risk of you having to modify

your software in response.

How will you

document

your

dependencies

?

Questions to consider:

• What dependencies do users need?

• What dependencies do developers need?

• What information will you record about your dependencies?

• How and where will you record this information?

Guidance:

Documenting your dependencies, helps you, your users and your developers to

understand all the components that are needed to build, develop, test and run

your software.

Dependencies should be explicitly documented and not implicitly buried within

your source code. It is waste of a user’s time to build, deploy and run your software

only to have it fail an hour later due to a missing dependency. You should also

document your implicit dependencies on operating systems, languages, and

browsers. Even a 10 line script has a dependency on the language used to

implement it and the operating systems it runs under.

Users need to know about the dependencies needed to run and, if applicable, build

your software. Developers need to know about the additional dependencies

needed to develop and test your software. Dependency information can include:

name; purpose; whether it is mandatory or optional; origin, for example, web site,

personal communication; copyright and licence; whether it is free or needs

payment of a fee; version information, for example version number, repository

commit identifier, date received, or digital object identifier (DOI); location of any

local copies, for example in your source code repository with a summary of any

local changes made (if applicable).

Understanding the licenses of third-party dependencies is important for your users

and developers as these will impose constraints and obligations on how you can

use, modify or redistribute these dependencies, which may affect how your

software can be used, modified or distributed.

Version information is important. Different versions of software, models, tools,

libraries, data formats, protocols, interfaces, services, databases, operating

systems, languages and browsers, can differ in terms of syntax, behaviour or

content. Software written to use one version might not be compatible with earlier

or later versions. For example, Python code with the statement “print ‘hello’” will

not run under Python 3, but code with the statement “print(‘hello’)” will run under

both Python 2 and 3.

Dependency information can form part of your user and developer documentation,

distributed with your software itself or published on a resource such as a web site

or wiki.

See the Software Sustainability Institute’s “How to cite and describe software”

(http://software.ac.uk/so-exactly-what-software-did-you-use) and “Oh research

software, how shalt I cite thee?” (http://www.software.ac.uk/blog/2014-07-30-oh-

research-software-how-shalt-i-cite-thee).

How will you

track changes

to your

dependencies

?

Questions to consider:

• How will you track changes to your dependencies?

• Will you check for updates to your dependencies on a regular basis?

• Will you update dependencies in response to requests from your users?

Guidance:

Dependencies can evolve over time, with new features being added, and old

features being deprecated. You may want your software to evolve to support

newer versions so you can exploit new features benefit from bug fixes or

optimisations, or continue to support the latest data formats, interfaces or

protocols. Your users may also request that you update your software in response

to updates to dependencies.

You should also keep an eye on any changes licensing conditions for subsequent

versions of your dependencies. Changes in licencing terms and conditions could

have consequences for you, your users and developers, which may affect how your

software can be used, modified or distributed.

Will you use

dependency

management

tools?

Guidance:

There are tools available to help automate management of software dependencies,

including:

• Ivy (http://ant.apache.org/ivy/) and Maven (https://maven.apache.org/)

for Java.

• Python pip (https://pypi.python.org/pypi/pip) and setuptools

(https://pypi.python.org/pypi/setuptools).

• PHP Composer (https://getcomposer.org/).

• Ruby gems (https://rubygems.org).

• R PackRat (https://rstudio.github.io/packrat/).

• CPAN-related tools (http://www.cpan.org/modules/INSTALL.html) for the

Perl CPAN (http://www.cpan.org/index.html) archive.

These tools provide a means of documenting information about dependencies,

including name, version and origin. They also pull in dependencies automatically,

either from the web, or from a local directory containing the dependencies, saving

users and developers from having to do this themselves.

Managing your software development

Managing who develops your software, what they do, how they will develop your software, how

their activities are tracked, and when your software is released.

What effort

will be

available to

develop your

software?

Questions to consider:

• What funded effort will you have?

• What unfunded, or additional, effort do you have available?

• Will you accept contributions from your users?

• Will you encourage your users to contribute to your software?

Guidance:

You might have access to unfunded effort that can help with the myriad tasks

around developing your software. You may have PhD students who can spend

some of their time working on your software. Masters and degree students might

provide another source of effort, either for free, as part of a degree project or a

summer job.

If you release your software, or make it available for use, then you may get

contributions from your target users, including: bug fixes, new features,

enhancements, corrections to documentation, case studies, tutorials or

walkthroughs. If managed correctly, contributions can provide you with free effort

for your project, and can provide fixes and features that you do not have time or

effort to implement yourself.

See the Software Sustainability Institute’s “Recruiting student developers”

(http://software.ac.uk/resources/guides/recruiting-student-developers).

How will

software

development

roles be

assigned?

Questions to consider:

• Who will assign roles to those working on your software?

Guidance:

Writing research software, especially that which is to be used by others, is more

than just writing code. It can include: writing documentation; reviewing code and

documentation; preparing releases, responding to bug reports, feature requests

and other questions from users; preparing presentations and demonstrations;

writing papers; writing reports for stakeholders; preparing papers; setting up, and

maintaining, project infrastructure; porting to cloud or super-computing resources

etc.

If it is just you developing your software, then you will fulfil all these roles. If you

are part of a team, then you need to decide who does what.

How you will

track who is

doing what

and when it

needs to be

done by?

Questions to consider:

• What information will you need for monitoring progress?

• What information will you need to report to other stakeholders, for

example, funders?

• How will this information be recorded?

• Who will keep this information up-to-date?

• Who will have access to this information?

Guidance:

Ticketing systems such as JIRA (https://www.atlassian.com/software/jira), Bugzilla

(https://www.bugzilla.org/) and Trac (http://trac.edgewall.org/) and those

provided by popular third-party services for source code repositories such as

GitHub (http://github.com), BitBucket (http://bitbucket.org), LaunchPad

(https://launchpad.net) and Assembla (https://www.assembla.com), as well as

project management tools like Trello (https://trello.com/) can be used to help

assign tasks and monitor progress.

What software

development

model will you

use?

Questions to consider:

• Are your requirements known, or will they be known, before development

begins?

• Will your requirements only become known once your intended users have

a working version they can use?

• Do you need a proof-of-concept of your software completed as soon as

possible?

• Do you have scope to develop your software in phases, rather than

implementing all its required functionality in one go?

Guidance:

Software development involves a number of activities including identifying the

requirements that the software must satisfy, designing the software, implementing

the software, testing the software, deploying or releasing the software, and

maintaining the software. When and how these are done is the remit of software

development models, also called lifecycles or processes. Many software

development models are available, varying in their formality and flexibility. Under

the traditional waterfall process, software development proceeds sequentially

through the activities above. Iterative development can be viewed as a sequence

of waterfalls, allowing for feedback on earlier versions to contribute to the design

of later versions. Agile methods promote also iterative development so that

working software is released early and then is evolved and extended. These are

complemented with continuous user engagement, where requirements are ever

evolving, and allow for rapid and flexible changes in goal in response to these.

See Wikipedia’s “Software development processes”

(http://en.wikipedia.org/wiki/Software_development_process) and Robert Half

Technology’s “6 Basic SDLC Methodologies: The Pros and Cons”

(http://www.roberthalf.com/technology/blog/6-basic-sdlc-methodologies-the-

pros-and-cons), which includes waterfall, iterative and agile models.

How you will

manage

releases of

your software

or updates to

your services?

Questions to consider:

• Who decides what features, enhancements and bug fixes a release will

contain?

• Who decides when the software is ready for release, and schedules the

release?

• Who prepares, checks, and publishes a release?

• How is the history of releases recorded?

Guidance:

If you do not plan to release your software, or people will access your software as a

service or via a web portal, then this question relates to deciding when to update

the software that underpins your deployed services.

A release history – including release dates, version numbers and/or commit

identifiers, key features and changes of each release – allows you, and your users,

to see how your software has evolved. It also demonstrates to users how active

you are in developing and maintaining your software. Software that is seen to be

regularly fixed, updated and extended will be more appealing than software that

seems to have stagnated.

How will you

ensure that

information is

not lost when

a developer

leaves?

Questions to consider:

• Will you ensure that information from developers is captured and

documented?

• How will you ensure knowledge is captured and exchanged so that

knowledge is not lost when people leave?

Guidance:

See the Software Sustainability Institute’s “Top tips for software development hand

overs” (http://www.software.ac.uk/blog/2013-10-10-top-tips-software-

development-hand-overs).

How often will

you review

and revise

your Software

Management

Plan?

Guidance:

Your Software Management Plan is not static but should be reviewed and adjusted

as a project progresses. Questions that could not be answered at the outset of a

project might now have answers. Some processes may not have worked well and

need to be replaced. New options for hosting or dependencies might become

available.

Updating the Software Management Plan allows you to reflect on how your project

is progressing and to take corrective action.

How does your

Software

Management

Plan relate to

any Data

Management

Plan?

Questions to consider:

• Will your software rely on data produced by others?

• Will your software produce data that needs to be published, shared or

preserved?

Guidance:

A Data Management Plan helps you plan for the effective creation, management

and sharing of your data, to enable you to get the most out of your research. See

the Digital Curation Centre’s “How to Develop a Data Management and Sharing

Plan” (http://www.dcc.ac.uk/resources/how-guides/develop-data-plan).

Engaging with your users

Promoting your software to your users, helping your users with your software, and encouraging your

users to help you. Growing a community of users and developers around a piece of software is

essential to ensure long term sustainability.

How will you

promote what

your software

does and who

has used it?

Questions to consider:

• Will you blog or tweet regularly?

• Will you publish case studies to show how yourself and others have used

your software?

• Will you publish a list of your publications, and those of others who have

used your software?

• Will you submit papers or posters to conferences or workshops?

• Will you run demonstration sessions or tutorials co-located with

conferences or workshops?

• Will you run your own workshops based around your software?

• Will you publish statistics on the number of users you have?

Guidance:

Blogs, Twitter, Facebook and RSS feeds are all effective, low cost, ways of

promoting your software. They also provide a way for you to engage with your

users, for example, by encouraging them to follow you, or inviting your users to

write guest blog posts.

Case studies can provide intended users with examples of how your software can

be used in practice, and the contribution it has made to your, and others’,

research.

Listing publications provides an academic perspective on the value of your

software. It can also help your users, and other stakeholders, such as current or

potential funders, to understand, in detail, how your software contributes to

research, and what scientific problems it has helped to solve. These can also help

to show where your software sits in relation to other software that fulfils a similar

need, and what makes yours different, and better.

Promoting the existence of a user community can help persuade others to adopt

your software also, giving them confidence that your software can benefit them,

and that, if they run into problems, there is a community who can help, and who

they can share experiences with.

See the Software Sustainability Institute’s “Five top tips for promoting your

software” (http://software.ac.uk/blog/2012-03-05-five-top-tips-promoting-your-

software) and “Top tips for expanding your user community”

(http://www.software.ac.uk/blog/2013-10-29-top-tips-expanding-your-user-

community).

How you will

support your

users when

they ask for

help?

Questions to consider:

• How will your users ask for help?

• How will you manage their requests for help?

• How much effort will be available to support your users?

• What level of support will you offer?

• Where will you publish information about the nature and level of support

available?

• Will users be able to see what other users have asked and the associated

answers?

Guidance:

If you release your software, or make it available for use, then you will get

questions about how to use it. An ignored request for help can lead to a

disgruntled user who may bad-mouth your software or you. Responding to

requests for help does not imply that you have to spend time in fixing bugs or

implementing features when they ask, it merely acknowledges that you've received

their request. No one has a right to expect support for freely provided software.

There are many ways in which you can have your users request help and support,

including: an e-mail to you, via telephone, to an e-mail list or forum, or creating an

issue in a ticketing system.

A ticketing system records who asked what, and when, and allows you, and them,

to record additional information about a query, to assign someone to handle a

specific query, and to prioritise queries so that you can work on the most

important first. Examples of ticketing systems include JIRA

(https://www.atlassian.com/software/jira), Bugzilla (https://www.bugzilla.org/)

and Trac (http://trac.edgewall.org/). Many source code repository hosts, including

GitHub (https://github.com), BitBucket (https://bitbucket.org), LaunchPad

(https://launchpad.net) and SourceForge (https://sourceforge.net) also provide

ticketing systems.

How much effort you have available to support users will be up to you. You can

even choose to provide no support. It is always good to make what, if any, support

you will provide clear on your website or in your documentation, e.g. “we will reply

to all e-mails within a week and will let you know when, or if, we can address your

issue”. A user will always want their problem to be solved as quickly as possible,

and may become disgruntled, and might even stop being a user, if this is not the

case. If you are clear and honest about the level of support you can provide, then

they have fewer grounds for complaint. At the very least, the information about

the nature and level of support available should be provided in your software’s

documentation. It should also be clearly visible from any place where users access

your software.

There are many ways to publish information about the help and support requested

by other users, and how these were resolved, including: e-mail archives, lists of

frequently asked questions, or a publicly visible ticketing system. Encouraging users

to search these resources before getting in touch can help users to help

themselves, and reduces the overhead you need to spend on support.

See the Software Sustainability Institute’s “Supporting open source software”

(http://software.ac.uk/resources/guides/supporting-open-source-software) and

“Top tips for managing support requests” (http://www.software.ac.uk/blog/2014-

01-21-top-tips-managing-support-requests). Many of the points apply not just to

supporting open source software, but any software.

How will your

users be able

to contribute

to your

software?

Questions to consider:

• Will you accept contributions from your users?

• Will you encourage your users to contribute to your software?

• Will contributors retain copyright over their contributions?

• Will you define a contributions policy?

Guidance:

If you release your software, or make it available for use, then you may get

contributions from your users, including: bug fixes, new features, enhancements,

corrections to documentation, case studies, tutorials or walkthroughs. If managed

correctly, contributions can provide you with free effort for your project, and can

provide fixes and features that you do not have time or effort to implement

yourself. It can also help evolve a community of users and developers around your

software.

Asking contributors to sign over their copyright and intellectual property can deter

users from contributing. It, in effect, asks them to give away ownership of

something that may be novel and which may represent a key aspect of their

research. Allowing contributors to keep their own copyright and intellectual

property removes this barrier, thereby making contribution a more attractive

option. It also helps to promote a community round your software, as everyone is

encouraged to share their outputs, without loss of credit or ownership.

A contributions policy provides information to your users on: what they can

contribute; how they can contribute it, for example, via e-mail, patch files, or

GitHub pull requests; any requirements they must satisfy, for example, compliance

to coding or style conventions, passing required tests, making their code available

under a certain licence, signing over their copyright; and, what happens to their

contributions once they have submitted it, for example how it is reviewed and then

added into your code, documentation or web site.

Users might not contribute if they do not know that they can contribute, so your

contributions policy should be clearly visible from any place where users access

your software.

For information on how to manage contributions, see OSS Watch's

“Contributor Licence Agreements” (http://oss-watch.ac.uk/resources/cla).

Intellectual property, copyright and licencing

JISC, in their guide to “Intellectual property law” (https://www.jisc.ac.uk/guides/intellectual-

property-law), defines intellectual property rights (IPR) as “very broadly, … rights granted to creators

and owners of works that are the result of human intellectual creativity.”

An important intellectual property rights is copyright, defined by JISC as “a legally enforceable

property right that enables a rights holder to profit from a work such as a book, for example. It does

this by preventing others from exploiting the work without the rights holder's say so for a period of

time.”

Related to copyright are licences, “a contractual agreement between the copyright owner and user

that limits how the user can use the work.” For software, a licence specifies the terms and conditions

under which others can use, distribute and modify your software.

Though not covered below, another intellectual property right is patents which “protect new

inventions and cover how things work, what they do, how they do it, what they are made of and

how they are made. It gives the owner the right to prevent others from making, using, importing or

selling the invention without permission.” If applicable, you may want to explore patents further

with your funders, stakeholders or institution’s research exploitation office.

Who will own

the copyright

of your

software?

Questions to consider:

• Does your funder, project or employer have a copyright statement you are

required to or are recommended to use?

• Does your contract of employment say anything about copyright?

• Who will own the copyright of any contributions to your software that

come from outside your institution or project?

• Has the copyright been agreed with your stakeholders? If not then why not

and how do you plan to resolve any disagreements?

Guidance:

Copyright holders must be legal entities such as people, companies, or institutions,

or groups of these.

If you are an employee of an institution or company, check your contract and with

your employer, since they may own the copyright on any work you do as an

employee.

If you work for a university, you may have a research exploitation office that can

advise you on who owns the copyright, and how to resolve any disagreements

within your stakeholders. Your department may also be able to advise you.

Users may contribute enhancements, extensions and bug fixes to your software.

These contributors can either retain copyright of their contributions or transfer

their copyright to you, via a formal copyright transfer agreement. The latter gives

you ownership of their code, but can deter users from making contributions to

your code or documentation that you might find useful. See OSS Watch’s

“Contributor Licence Agreements” (http://oss-watch.ac.uk/resources/cla). Much of

its advice applies not just to open source software, but any software.

For an introduction to intellectual property and the intellectual property rights of

copyright, patents and trade-marks, see JISC’s “Intellectual property law”

(https://www.jisc.ac.uk/guides/intellectual-property-law). See also JISC’s

“Copyright law” (https://www.jisc.ac.uk/guides/copyright-law).

What licence

will you

choose?

Questions to consider:

• Will you be releasing your software?

• Does your funder, project or employer have a licence you are required to

or are recommended to use?

• Will you choose a proprietary licence, an open source licence, or will you

release your software into the public domain?

• If choosing an open source licence, will you choose an OSI-approved open

source licence?

• Is your chosen licence valid under your national laws?

• Is your chosen licence acceptable to your stakeholders? If not then why not

and how do you plan to resolve any disagreements?

Guidance:

If you do not plan to release your software, or people will access your software as a

service or via a web portal, then this question may not be applicable.

For each licence, specify its name, a link to its licence text (if this is online), and a

brief explanation as to why it has been chosen. If there is no online link, summarise

the key terms and conditions.

If you are a copyright owner, you can licence your software in as many ways as you

want.

If you plan to modify (and especially distribute) third-party software then your

choice of licence may be affected by the licences of that software. For example, if

you modify code released under the GNU Public Licence then you are required to

release the source code of your modifications along with any binaries.

Making your source code available can give your users confidence that if you

disappear, or your project ends, they at least have the means to be able to access,

fix, improve or extend your software themselves, or employ others to do so. It also

gives them the potential to make such changes when they need them, rather than

having to wait for you to do it on their behalf. See OSS Watch’s “Benefits of Open

Source” (http://oss-watch.ac.uk/resources/whoneedssource) and the Software

Sustainability Institute’s “Choosing an open source licence”

(http://software.ac.uk/resources/guides/adopting-open-source-licence).

You might want to consider dual licencing, a model where software can be

released for free under an open source licence such as the GNU Public Licence (so

users who make modifications have to release the source code of their

modifications along with any binaries) but also released under a proprietary, and

paid-for, licence to those users who do not want to release the source code of their

modifications. A variant is the so-called “Freemium” model, where you release a

version of your software that has a baseline set of functionality your users will find

useful under an open source licence, and to make available more powerful,

efficient or novel components as plug-ins, licenced under a proprietary licence. See

OSS Watch’s “Dual licensing” (http://oss-watch.ac.uk/resources/duallicence).

The Open Source Initiative (OSI) (http://opensource.org) has produced an “Open

Source Definition” (http://opensource.org/osd). This promotes a shared

understanding of the term 'open source'. Some open source project hosting

services will only host code licenced under an OSI-approved licence. See the OSI’s

list of “OSI-approved licences” (http://opensource.org/licenses).

Certain licences may not be valid within certain countries. For example, it is not

clear whether the MIT Public Licence (http://opensource.org/licenses/MIT) is valid

under UK law as under UK law you cannot reject liability for personal injury or

death. In this case, choosing an alternative free, open source, OSI-approved

licence, e.g. Apache 2 (http://www.apache.org/licenses/LICENSE-2.0), would

provide similar licence conditions to the MIT Public License, but provides a

limitation of liability that does not exclude applicable laws. Again, your research

exploitation office or department may be able to advise you on whether a licence is

valid.

The Lindat License Selector (http://ufal.github.io/public-license-selector/) is a tool

which may help you select licences for both your software and, if applicable, data.

You might choose to waive all copyright and release your software into the public

domain, so anyone can do anything with it. See the Open Source Initiative’s “What

about software in the "public domain"? Is that Open Source?”

(http://opensource.org/faq#public-domain).

If one or more partners are unhappy with the licence then they may be reluctant to

use or contribute code, which could jeopardise the success of your project.

Another choice of licence may be more acceptable to you and your stakeholders.

If you work for a university, you may have a research exploitation office that can

advise you on which licence to choose, and how to resolve any disagreements

within your stakeholders. Your department may also be able to advise you. Your

funder may have a recommended licence, or type of licence, you are required to

use.

Where will you

publish your

copyright and

Guidance:

A statement of copyright for your software and documentation makes it clear to

licence? users who created, and owns the rights to, the software and documentation. Users

also need to know the licensing conditions of your software, and also of any third-

party software bundled with it, since these may impose constraints and obligations

on how, or whether, they can use, modify or redistribute your software.

You can publish your copyright statement and license in myriad places, including:

on a web site, on a download page, within an installer screen, within your user

documentation, within a README file in a source or binary archive or source code

repository, or as a Help => About menu option in a graphical user interface.

Including a copyright and licence statement in each of your source code files, as a

comment, means that the copyright and licence statement stays with the source

code, even if individual files, or sets of files, are copied and used in other software.

As full licences can be very verbose, you may just want to have a short comment

that states the name of the licence, its key points and a link to the full licence text

online. Many common licences provide examples of such comments for use. See,

for example “How to Apply These Terms to Your New Programs” for the GNU

General Public License version 3 (http://www.gnu.org/licenses/gpl-3.0.en.html) or

“Appendix: How to Apply the Apache License to Your Work” for the Apache License

Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0).

Preserving your software

Software has a lifetime and this may extend far beyond that of your project or the period for which

you actively develop and maintain it. Your user community may continue to need it, use it, or

develop it, long after your project has ended and you and your developers have moved on to other

projects.

Do you have a

preservation

plan?

Questions to consider:

• Is your software covered by a preservation policy or strategy from your

funders or stakeholders?

• Is there a clear purpose in preserving your software?

• Is there a clear time period for preservation?

• Do the predicted benefits exceed the predicted costs?

• Is there motivation for preserving your software?

• Is the necessary capability available?

• Is the necessary capacity available?

Guidance:

See Neil Chue Hong, Steve Crouch, Simon Hettrick, Tim Parkinson, Matt Shreeve,

“Software Preservation Benefits Framework”, The Software Sustainability Institute

and Curtis+Cartwright Consulting Ltd, 7 December 2010

(http://www.software.ac.uk/attach/SoftwarePreservationBenefitsFramework.pdf).

Where can

you deposit

your software

for long-term

preservation?

Questions to consider:

• Will you preserve your software yourself?

• Is there a departmental or institutional service you can use?

• Does your funder recommend, or mandate, a service that you can use?

• Can you continue to use the host of your source code repository?

• Will everyone who needs to access the service be able to access it?

• Is the host’s quality of service for the service acceptable for your needs?

• Is the service free or do you have to pay a fee to the host? If you have to

pay a fee, can you afford the payments for as long as you need?

• Does the service, and host, look like they will be around for as long as you

need them? How much advance warning will you be given if the service is

discontinued?

• Are there any alternatives that are also suitable, should you need to

migrate in future?

Guidance:

You may need to change your host in future if their policies or practices change or

they cease to exist. For example, in September 2010 the UK e-Science repository

service, NeSCForge was terminated after many years, and in 2015 there was

controversy (http://arstechnica.co.uk/information-

technology/2015/05/sourceforge-grabs-gimp-for-windows-account-wraps-

installer-in-bundle-pushing-adware/) over SourceForge’s handling of projects they

had perceived to be abandoned.

See the Software Sustainability Institute’s “Choosing a repository for your software

project” (http://software.ac.uk/resources/guides/choosing-repository-your-

software-project).

Do you plan to

evolve your

project into an

open source

project?

Questions to consider:

• Do you have a governance model?

• Do you have the infrastructure to run an open source project?

Guidance:

A governance model sets out how an open source project is run. It describes the

roles within the project and its community and the responsibilities associated with

each role; how the project supports its community; what contributions can be

made to the project, how they are made, any conditions the contributions must

conform to, who retains copyright of the contributions and the process followed by

the project in accepting the contribution; and, the decision-making process in

within the project. Though they are designed for open source projects, many of

their concerns are relevant to any software project.

For an open source project, you will need similar infrastructure to that which you

have used during your project to date. OSS Watch recommend, at a minimum, a

web site, a developer mailing list or forum, version control and an issue tracker.

Popular third-party hosts for open source projects include GitHub

(http://github.com), GitLab (http://www.gitlab.com), BitBucket

(http://bitbucket.org), LaunchPad (https://launchpad.net) and Assembla

(https://www.assembla.com). These hosts can differ in their pricing and levels of

service. Some charge for private repositories. Some offer discounts or free hosting

for academics.

See OSS Watch’s “Governance models” (http://oss-

watch.ac.uk/resources/governancemodels) and “Essential Tools For Running A

Community-Led Project” (http://oss-watch.ac.uk/resources/communitytools).

